SlidePIN: Slide-based PIN Entry Mechanism on a Smartphone

Huiping Sun,

Shuaiying Guo, Ke Wang, Nan Qin, Zhong Chen

School of Software & Microelectronics

Peking University, Beijing, China

Background

http://www.mireview.com/blog/wp-content/uploads/2013/03/timthumb.jpg

Existing Solutions

SlidePIN Concepts

Model Design

Experiment Design

Sequence Length Analysis

Sequence Length Analysis

Sequence Length Analysis

- Estimate of Sequence Length
 - * Mean value of sequence length: 11.55 vs 11.46
 - * Lower threshold of sequence length: 9
 - * Upper threshold of sequence length: 15

Security Analysis

• Shoulder surfing attack

One-Time	Sequence Length				9	10	11	12	13	14	15
	PIN				126	210	330	495	715	1001	1365
	Times	u1	<i>u2</i>	и3	<i>u4</i>	и5	иб	<i>u</i> 7	<i>u</i> 8	<i>u</i> 9	<i>u10</i>
Multi-Time	2	6	6	6	6	7	6	6	7	6	4
	3	5	5	4	4	4	4	4	5	4	
	4	4	4						4		

- Guessing attack
 - * Brute force attack
 - * Dictionary attack

- Replay attack
 - * Random numeric keypad

Usability Analysis

	Groups	Aver
 Orientation time 	1	0.60
	2	1.0
	3	0.7

Groups	Average	Standard Deviation	Threshold Value
1	0.687	0.133	0.989
2	1.064	0.199	1.510
3	0.798	0.293	1.846
4	1.186	0.225	1.713

Usability Analysis

- Unlock time
 - * Sliding is faster
 - * Input sequence become longer
 - * Random number keypad increases unlock time

Usability Analysis

• Error rate	Groups	Error Rate
* Sequence length limit	1	1.67%
	2	3.33%
* Start point and end point	3	7.69%
* No familiar enough	4	13.04%
		1

- Cost of learning
 - * SlidePIN is build based on 4-digits PIN
 - * SlidePIN is easy to use
 - * SlidePIN is interesting to use

Discussion

Conclusion

- SlidePIN performs better than 4-digits PIN against shoulder surfing attack.
- At the same time, SlidePIN has acceptable usability.

